wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If u=ax2+2bxy+cy2,u=ax2+2bxy+cy2, then prove that ∣ ∣y2xyx2abcabc∣ ∣=ax+bybx+cyax+bybx+cy=1yuuax+byax+by

Open in App
Solution

Consider first part
∣ ∣y2xyx2abcabc∣ ∣
Expanding along the first row,
y2bcbc+xyacac+x2abab

=y2(bcbc)+xy(acac)+x2(abab)

Consider second part,
ax+bybx+cyax+bybx+cy

=(ax+by)(bx+cy)(bx+cy)(ax+by)

=abx2+acxy+bbxy+bcy2(abx2+bbxy+acxy+bcy2)

=y2(bcbc)+xy(acac)+x2(abab)

Consider third part,
1yuuax+byax+by

=1yax2+2bxy+cy2ax2+2bxy+cy2ax+byax+by

=1y[(ax2+2bxy+cy2)(ax+by)(ax2+2bxy+cy2)(ax+by)]

=1y[(aax3+abx2y+2abx2y+2bbxy2+acxy2+bcy3)
(aax3+abyx2+2bax2y+2bbxy2+acxy2+bcy3)]

=1y[abx2y+2abx2y+2bbxy2+acxy2+bcy3abyx22bax2y2bbxy2acxy2bcy3]

=[abx2+2abx2+2bbxy+acxy+bcy2abx22bax22bbxyacxybcy2]

=[abx2+abx2+acxy+bcy2acxybcy2]

=y2(bcbc)+xy(acac)+x2(abab)

Hence, all the three parts are equal

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon