wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If u=log(x2+y2+z2) then prove that (x2+y2+z2)(d2udx2+d2udy2+d2udz2)=1.

Open in App
Solution

u=logx2+y2+z2
u=log(x2+y2+z2)12
u=12log(x2+y2+z2)
2u=log(x2+y2+z2)
Differentiating w.r.t. 'x' on both sides, we get
2dudx=1x2+y2+z2(2x)
dudx=xx2+y2+z2
d2udx2=(x2+y2+z2)(ddx(x))x(ddx(x2+y2+z2))(x2+y2+z2)2
d2udx2=x2+y2+z2x(2x)(x2+y2+z2)
=x2+y2+z2(x2+y2+z2)2
Similarly, d2udy2=y2+x2+z2(x2+y2+z2)2
d2udz2=z2+x2+y2(x2+y2+z2)2
(x2+y2+z2)(d2udx2+d2udy2+d2udz2)=(x2+y2+z2)[x2+y2+z2(x2+y2+z2)2]
=(x2+y2+z2)(x2+y2+z2)2=1.

1192261_1195662_ans_6757cf2617e04b2a8f8e74b674d5384a.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon