1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
If u=log √x...
Question
If
u
=
l
o
g
√
(
x
2
+
y
2
+
z
2
)
then prove that
(
x
2
+
y
2
+
z
2
)
(
d
2
u
d
x
2
+
d
2
u
d
y
2
+
d
2
u
d
z
2
)
=
1
.
Open in App
Solution
u
=
l
o
g
√
x
2
+
y
2
+
z
2
u
=
l
o
g
(
x
2
+
y
2
+
z
2
)
1
2
u
=
1
2
l
o
g
(
x
2
+
y
2
+
z
2
)
⇒
2
u
=
l
o
g
(
x
2
+
y
2
+
z
2
)
Differentiating w.r.t. 'x' on both sides, we get
2
d
u
d
x
=
1
x
2
+
y
2
+
z
2
⋅
(
2
x
)
⇒
d
u
d
x
=
x
x
2
+
y
2
+
z
2
d
2
u
d
x
2
=
(
x
2
+
y
2
+
z
2
)
(
d
d
x
(
x
)
)
−
x
(
d
d
x
(
x
2
+
y
2
+
z
2
)
)
(
x
2
+
y
2
+
z
2
)
2
⇒
d
2
u
d
x
2
=
x
2
+
y
2
+
z
2
−
x
(
2
x
)
(
x
2
+
y
2
+
z
2
)
=
−
x
2
+
y
2
+
z
2
(
x
2
+
y
2
+
z
2
)
2
Similarly,
d
2
u
d
y
2
=
−
y
2
+
x
2
+
z
2
(
x
2
+
y
2
+
z
2
)
2
d
2
u
d
z
2
=
−
z
2
+
x
2
+
y
2
(
x
2
+
y
2
+
z
2
)
2
(
x
2
+
y
2
+
z
2
)
(
d
2
u
d
x
2
+
d
2
u
d
y
2
+
d
2
u
d
z
2
)
=
(
x
2
+
y
2
+
z
2
)
[
x
2
+
y
2
+
z
2
(
x
2
+
y
2
+
z
2
)
2
]
=
(
x
2
+
y
2
+
z
2
)
(
x
2
+
y
2
+
z
2
)
2
=
1
.
Suggest Corrections
0
Similar questions
Q.
If
u
=
(
x
2
+
y
2
+
z
2
)
1
/
2
then prove that
u
(
d
2
u
d
x
2
+
d
2
u
d
y
2
+
d
2
u
s
z
2
)
=
2
.
Q.
If
u
=
x
2
+
y
2
and
x
=
s
+
3
t
,
y
=
2
s
−
t
, where
t
does not depend on
s
, then
d
2
u
d
s
2
is
Q.
Let
f
(
x
)
=
sin
x
;
g
(
x
)
=
x
2
and
h
(
x
)
=
log
x
. If
u
(
x
)
=
h
(
f
(
g
(
x
)
)
)
, then
d
2
u
d
x
2
is
Q.
If
u
=
f
(
r
)
, where
r
2
=
x
2
+
y
2
+
z
2
, then prove that:
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
+
∂
2
u
∂
z
2
=
f
′′
(
r
)
+
2
r
f
(
r
)
Q.
If
u
=
x
2
+
y
2
and
x
=
s
+
3
t
,
y
=
2
s
−
t
,
where
s
and
t
are independent of each other, then the value of
d
2
u
d
s
2
is
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Algebra of Derivatives
MATHEMATICS
Watch in App
Explore more
Algebra of Derivatives
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app