The correct option is
A 0Given Un=sin(nθ).secnθ=cos(nθ).secnθ
Vn−Vn−1+Un−1tanθ
Vn=cos(nθ).secnθ
Vn=cos((n−1)θ+θ).secn−1θ.secθ
Vn=secn−1θ[cos(n−1)θ.cosθ−sin(n−1)θ.sinθ].secθ
Vn=secn−1θ[cos(n−1)θ.cosθ.secθ−sin(n−1)θ.sinθ.secθ]
Vn=secn−1θ[cos(n−1)θ−sin(n−1)θ.sinθcosθ]
Vn=secn−1θ[cos(n−1)θ]−secn−1θ[sin(n−1)θ.tanθ]
Vn=cos(n−1)θ.secn−1θ−sin(n−1)θ.secn−1θ.tanθ
Vn=Vn−1−[sin(n−1)θ.secn−1θ].tanθ
Vn=Vn−1−[Un−1]tanθ
Vn−Vn−1+Un−1.tanθ=0