The correct option is E −12
Given, u=tan−1{√1−x2−1x}
and v=sin−1x
Put x=sinθ⇒θ=sin−1x, then
u=tan−1{cosθ−1sinθ}(∵1−cos2θ=sin2θ)
=−tan−1{1−cosθsinθ}
=−tan−1{2sin2θ/22sinθ/2⋅cosθ/2}
=−tan−1(tanθ2)
=−12θ=−12sin−1x
Therefore, dudx=−12√1−x2
and dvdx=1√1−x2
Thus dudv=dudx×dxdv=−12√1−x2×√1−x2
=−12