→a⋅→b=1√5×2√14+(−2√5)×1√14=2√70−2√70=0|→a|=√(1√5)2+(−2√5)2=√1+45=1∣∣→b∣∣=√(2√14)2+(1√14)2+(3√14)2=√4+1+914=1(2→a+→b)⋅[(→a×→b)×(→a−2→b)]=−(2→a+→b)⋅[(→a−2→b)×(→a×→b)](→a×→b=−→b×→a)=−(2→a+→b)⋅[{(→a−2→b).→b}→a−{(→a−2→b)⋅→a}→b]=−(2→a+→b)⋅[(→a⋅→b−2→b⋅→b)→a−(→a⋅→a−2→b⋅→a)→b]=−(2→a+→b)⋅[−2∣∣→b∣∣2→a−(|→a|2)→b](→b⋅→b=∣∣→b∣∣2,→a⋅→b=→b⋅→a)=−(2→a+→b)⋅[−2→a−→b]=(2→a+→b)⋅(2→a+→b)=4(→a⋅→a)+→b⋅→b+4→a⋅→b=4×1+1+0=5