If →a×→b=→c, →b×→c=→a and a,b,c be the moduli of the vectors →a, →b, →c respectively, then
b = 1, c = a
Since →a×→b=→c∴(→b×→c)×→b=→c⇒(→b.→b)→c−(→b.→c)→b=→c⇒(→b.→b)=1, →b.→c=0⇒b2=1 i.e. b=1
Angle between →b and →c is 90∘
⇒|→b×→c|=|→b||→c|=|→c| (∵|→b|=1)
∴|→b×→c|=|→c|=|→a| i.e. c=a.