Given:
|→a|=3,∣∣→b∣∣=4,|→c|=5
Also,
Each one of them being perpendicular to the sum of the other two vectors
Therefore,
→a is perpendicular to →b+→c
⇒→a⋅(→b+→c)=0
⇒→a⋅→b+→a⋅→c=0 …… (1)
→b is perpendicular to →a+→c
⇒→b⋅(→a+→c)=0
⇒→b⋅→a+→b⋅→c=0 …… (2)
→c is perpendicular to →a+→b
⇒→c⋅(→a+→b)=0
⇒→c⋅→a+→c⋅→b=0 …… (3)
Now,
∣∣→a+→b+→c∣∣2=(→a+→b+→c)⋅(→a+→b+→c)
∣∣→a+→b+→c∣∣2=→a⋅→a+→a⋅→b+→a⋅→c+→b⋅→a+→b⋅→b+→b⋅→c+→c⋅→a+→c⋅→b+→c⋅→c
∣∣→a+→b+→c∣∣2=→a⋅→a+(→a⋅→b+→a⋅→c)+→b⋅→b+(→b⋅→a+→b⋅→c)+→c⋅→c+(→c⋅→a+→c⋅→b)
From equations (1), (2) and (3), we have
∣∣→a+→b+→c∣∣2=→a⋅→a+(0)+→b⋅→b+(0)+→c⋅→c+(0)
∣∣→a+→b+→c∣∣2=→a⋅→a+→b⋅→b+→c⋅→c
∣∣→a+→b+→c∣∣2=|→a|2+∣∣→b∣∣2+|→c|2
∣∣→a+→b+→c∣∣2=32+42+52
∣∣→a+→b+→c∣∣2=50
So,
∣∣→a+→b+→c∣∣=√50
∣∣→a+→b+→c∣∣=5√2
Hence, this is the required result.