The correct option is D Normal Vector to the plane containing →a,→b,→c
The sides of the triangle is given by,
→AB=→b−→a, and →BC=→c−→b
Then area of the triangle is
=12→AB×→BC
=12(→b−→a)×(→c−→b)
=12[→b×(→c−→b)−→a(→c−→b)]
=12[(→b×→c)−(→b×→b)−(→a×→c)+(→a×→b)]
Now →b×→b=0
Hence, =12[(→b×→c)−(→b×→b)−(→a×→c)+(→a×→b)]
=12[(→b×→c)−(→a×→c)+(→a×→b)]
=12[(→b×→c)+(→c×→a)+(→a×→b)]
12→AB×→BC=12[(→b×→c)+(→c×→a)+(→a×→b)]
→AB×→BC=(→b×→c)+(→c×→a)+(→a×→b)
But →AB×→BC will give a vector perpendicular to the plane containing AB and BC, that is perpendicular to the plane of the triangle ABC.
Hence, (→b×→c)+(→c×→a)+(→a×→b) is vector parallel to the normal vector of the plane of triangle ABC.