If →a, →b, →c are vectors show that →a + →b + →c = 0 and
|→a| = 3, ∣∣→b∣∣ = 5, |→c| = 7 then angle between vector →b and →c is
Given, →a,→b,→c are vectors
→a+→b+→c=θ
|→a|=3,|→b|=5,|→c|=7
To find : angle between vector →b and →c.
→a+→h+→c=0
→b+→c=→a
|→b|2+|→c|2+2→b⋅→c=|→a|2 [squaring both sides]
25+49+21→5∥→c|cosθ=|→a|2
74+2×5×7cosθ=9
70cosθ=9−74
cosθ=−657014