wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If vectors ¯b,¯c,¯d are not coplanar then prove that
(¯aׯb)×(¯cׯd)+(¯aׯc)×(¯dׯb)+(¯aׯd)×(¯bׯc) is parallel to ¯a
1181443_2580dba7874f4379b0e6af252b8b7941.JPG

Open in App
Solution

We know
(A×B)×(C×D)=[ACD]B[BCD]A
(a×b)×(c×d)=[acd]b[bcd]a ___ (i)
(a×c)×(d×b)=[adb]c[cdb]a ___ (ii)
(a×d)×(b×c)=[abc]d[dbc]a ___ (iii)
=[acd]b[adb]c ___ (iv)
a=(a×b)×(c×d)+(a×c)×(d×b)+(a×d)×(b×c)
=[acd]b[bcd]a+[adb]c[cdb]a[acd]b[adb]c
=[bcd]a[bcd]a
u=2[bcd]a
u=λa
Hence, u & a are parallel vector.
Given vector is paralle to a (proved)

1086503_1181443_ans_b63bed3c0a4b49ba90990d9183d381b6.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications of Cross Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon