(x+1)2=x⇒x2+x+1=0⇒x=−1±i√32=ω,ω2
where ω is the cube root of unity.
⇒x+1x=ω+ω2=−1
Now, when n is a multiple of 3,
xn+1xn=1+1=2
When n is not a multiple of 3,
xn+1xn=wn+w2n=−1
∴(x+1x)2+(x2+1x2)2+(x3+1x3)2+⋯+(x30+1x30)2=(−1)2+(−1)2+22+(−1)2+(−1)2+22+⋯+(−1)2+(−1)2+22
=6+6+6+⋯ 10 times=60