Given, x=1+a+a2+a3+...
S∞=a1−r
Here, a=1,r=a
Therefore, x=11−a
⇒1−a=1x
⇒a=1−1x
⇒y=1+b+b2+b3+....
⇒a=1,r=b
⇒y=11−b
⇒1−b=1y
⇒b=1−1y
Taking L.H.S
1+ab+a2b2+a3b2+.....
=1+ab+(ab)2+(ab)2+.....
=1+ab+(ab)2+(ab)3+.....
S∞=a1−r Here a=1,r=ab
=11−ab
=11−(1−1x)(1−1y)
=11−(1−1y−1x+1xy)
=11−1+1y+1x−1xy
=11y+1x−1xy=1x+y−1xy
=xyx+y−1