wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=1+a+a2+a3+... and y=1+b+b2+b3+...., then show that 1+ab+a2b2+a3b3+...=xyx+y1

Open in App
Solution

Given, x=1+a+a2+a3+...
S=a1r
Here, a=1,r=a
Therefore, x=11a
1a=1x
a=11x
y=1+b+b2+b3+....
a=1,r=b
y=11b
1b=1y
b=11y
Taking L.H.S
1+ab+a2b2+a3b2+.....
=1+ab+(ab)2+(ab)2+.....
=1+ab+(ab)2+(ab)3+.....
S=a1r Here a=1,r=ab
=11ab
=11(11x)(11y)
=11(11y1x+1xy)
=111+1y+1x1xy
=11y+1x1xy=1x+y1xy
=xyx+y1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon