The correct option is B 11−x
The given series is in the form
f1′(x)f1(x)+f2′(x)f2(x)+f3′(x)f3(x)+⋯∞
Then consider the product f1(x).f2(x).f3(x)⋯fn(x). Now,
(1−x)(1+x)(1+x2)(1+x4)⋯(1+x2n−1) ---------(1)
=(1−x2)(1+x2)(1+x4)⋯(1+x2n−1)
=(1−x4)(1+x4)⋯(1+x2n−1)
⋮
=(1−x2n−1)(1+x2n−1)
=1−x2n
Now, when n→∞, x2n−1→0(∵x<1).
Therefore, taking n→∞, in (1), we get
(1−x)(1+x)(1+x2)(1+x4)⋯=1
Taking logarithm, we get
log(1−x)+log(1+x)+log(1+x2)+log(1+x4)+⋯=0
Differentiating w.r.t. x, we get
−11−x+11+x+2x1+x2+4x31+x4+⋯=0
or 11+x+2x1+x2+4x31+x4+⋯∞=11−x