wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x1,x2,x3,x4 are roots of the equation x4x3sin2β+x2cos2βxcosβsinβ=0 then
tan1x1+tan1x2+tan1x3+tan1x4=

A
β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2β
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
πβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B π2β
Here x1=sin2β,x1x2=cos2β
x1x2x3=cosβ,x1x2x3x4=sinβ
Now let tan1x1=α1,tan1x2=α2,tan1x3=α3,tan1x4=α4
x1=tanα1 etc.
tan(α1+α2+α3+α4)=s1s31s2+s4
Now s1=tanα1=x1=sin2β
s2=tanα1tanα2=x1x2x3=cos2β
s3=tanα1 tanα2 tanα3=x1 x2 x3=cos2β
s4=tanα1 tanα2 tanα3 tanα4
=x1.x2.x3.x4=sinβ
tan(α1+α2+α3+α4)=sin2βcosβ1cos2βsinβ
=cosβ(2sinβ1)sinβ(2sinβ1)=cotβ=tan(π2β)
α1+α2+α3+α4=π2β
i.e., tan1x1+tan1x2+tan1x3+tan1x4=π2β

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon