If x1,x2,x3,x4 are roots of the equation x4−x3sin2β+x2cos2β−xcosβ−sinβ=0 then tan−1x1+tan−1x2+tan−1x3+tan−1x4=
A
β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2−β
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π−β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bπ2−β Here ∑x1=sin2β,∑x1x2=cos2β ∑x1x2x3=cosβ,x1x2x3x4=−sinβ Now let tan−1x1=α1,tan−1x2=α2,tan−1x3=α3,tan−1x4=α4 ⇒x1=tanα1 etc. ∴tan(α1+α2+α3+α4)=s1−s31−s2+s4 Now s1=∑tanα1=∑x1=sin2β s2=∑tanα1tanα2=∑x1x2x3=cos2β s3=∑tanα1tanα2tanα3=∑x1x2x3=cos2β s4=tanα1tanα2tanα3tanα4 =x1.x2.x3.x4=−sinβ ∴tan(α1+α2+α3+α4)=sin2β−cosβ1−cos2β−sinβ =cosβ(2sinβ−1)sinβ(2sinβ−1)=cotβ=tan(π2−β) ⇒α1+α2+α3+α4=π2−β i.e., tan−1x1+tan−1x2+tan−1x3+tan−1x4=π2−β