If x1,x2,x3,x4 are roots of the equation x4−x3sin2β+x2cos2β−xcosβ−sinβ=0 then tan−1x1+tan−1x2+tan−1x3+tan−1x4=
π2−β
We have ∑x1=sin2β, ∑x1x2=cos2β∑x1x2x3=cosβ and x1.x2.x3.x4=−sinβ∴tan−1x1+tan−1x2+tan−1x3+tan−1x4=tan−1(∑x1−∑x1x2x31−∑x1x2+x1x2x3x4)=tan−1(sin2β−cosβ1−cos2β−sinβ)=tan−1((2sinβ−1)cosβsinβ(2sinβ−1))=tan−1[tan(π2−β)]=π2−β