The correct option is
B 30Let x1=a and common difference be d
∴x2=a+d,x3=a+2d..........x4001=a+4000d
Given: x2+x4000=50⇒a+d+a+3999d=50
a+4000d=50−a...(1)
Also: 1x1x2+1x2x3+....+1x4000x4001=10
Multiply and divide by d, we get,
1d(da(a+d)+d(a+d)(a+2d)+....+d(a+3999d)(a+4000d))=10
1d((1a−1a+d)+(1a+d−1a+2d)+....+((1a+3999d−1a+4000d))=10
1d(1a−1a+4000d)=10.......(2)
4000a(a+4000d)=10
Substitute value of a+4000d by eq (1),
4000a(50−a)=10⇒400=50a−a2
a2−50a+400=0⇒(a−40)(a−10)=0
a=10,40
∴a+4000d=50−a→d=50−2a4000
a=10→d=304000=3400
a=40→d=−304000=−3400
|x1−x4001|=|a−(a+4000d)|=|−4000d|=4000|d|
4000×|±3400|=30