wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=2cos4(t+3),y=3sin4(t+3) show that dydx=3y2x

Open in App
Solution

We have,

x=2cos4(t+3) ……. (1)

On differentiating both sides w.r.t t, we get

dxdt=2(4cos3(t+3)(sin(t+3)))

dxdt=8sin(t+3)cos3(t+3) ……. (2)

Since,

y=3sin4(t+3) …….. (3)

On differentiating both sides w.r.t t, we get

dydt=3(4sin3(t+3)cos(t+3))

dydt=12sin3(t+3)cos(t+3) …….. (4)

On dividing equation (4) by (2), we get

dydx=12sin3(t+3)cos(t+3)8sin(t+3)cos3(t+3)

dydx=3sin2(t+3)2cos2(t+3)

From equation (1) and (3), we get

dydx=3y32x2

dydx=3y2x

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon