We have,
x=2cos4(t+3) ……. (1)
On differentiating both sides w.r.t t, we get
dxdt=2(4cos3(t+3)(−sin(t+3)))
dxdt=−8sin(t+3)cos3(t+3) ……. (2)
Since,
y=3sin4(t+3) …….. (3)
On differentiating both sides w.r.t t, we get
dydt=3(4sin3(t+3)cos(t+3))
dydt=12sin3(t+3)cos(t+3) …….. (4)
On dividing equation (4) by (2), we get
dydx=12sin3(t+3)cos(t+3)−8sin(t+3)cos3(t+3)
dydx=−3sin2(t+3)2cos2(t+3)
From equation (1) and (3), we get
dydx=−3√y32√x2
dydx=−√3y2x
Hence, proved.