wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=2cosθcos2θ and y=2sinθsin2θ, then prove that dydx=tan(3θ2)

Open in App
Solution

Differentiate x and y with respect to θ.
dxdθ=2sinθ+2sin2θ
dydθ=2cosθ2cos2θ
dydx=dydθ×dθdx
=2cosθ2cos2θ2sinθ+2sin2θ
=cosθcos2θsinθ+sin2θ
We use trignometric identities cosACosB=sin(A+B2)sin(AB2), and sinAsinB=2cos(A+B2)sin(AB)2
cosθcos2θsinθ+sin2θ=2sin3θ2sinθ22cos3θ2sinθ2
Hence we obtaindydx=tan3θ2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon