If x2 + y2 = 14 and xy = 3, find the value of 2(x+y)2−5(x−y)2.
0
106
14
52
2(x2 + y2 +2xy)−5(x2 - 2xy + y2) = 2x2 +2y2 + 4xy - 5x2 + 10xy - 5y2 = -3x2 - 3y2 + 14xy = -3(x2 +y2) + 14xy = (-3 × 14) + (14 × 3) = - 42 + 42 = 0
If x2+y2=14 and xy=3, then find the value of 2(x+y)2−5(x−y)2.
If x2+y2=14 and xy=3, find the value of 2(x+y)2−5(x−y)2.
The equation of a circle which cuts the three circles
x2 + y2 − 3x − 6y + 14 = 0,
x2 + y2 − x − 4y + 8 = 0
x2 + y2 + 2x − 6y + 9 = 0
orthogonally is –––––––––––––––