If x2+y2+z2=r2, then tan-1xyzr+tan-1yzxr+tan-1zxyr=
π
π2
0
None of these
Explanation for the correct option.
Sum of inverse trigonometric ratios:
tan-1xyzr+tan-1yzxr+tan-1zxyr=tan-1xyzr+yzxr+zxyr-xyzr×yzxr×zxyr1-xyzr×yzxr-yzxr×zxyr-zxyr×xyzrbytan-1A+tan-1B+tan-1C=tan-1(A+B+C-ABC1-AB-BC-CA)=tan-1x2y2+y2z2+z2x2-x2y2z2xyzrr2-x2+y2+z2r2=tan-1x2y2+y2z2+z2x2-x2y2z2xyzr0[Givenx2+y2+z2=r2]=tan-1∞=π2
Hence, option B is correct.