If (x2+y2+z2)=(xy+yz+zx), what is the value of x3+y3+z3?
3xyz
-3xyz
2xyz
-2xyz
We know that x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)−−−(1) According to question, (x2+y2+z2)=(xy+yz+zx). ∴ RHS will be zero in equation (1) So,x3+y3+z3=3xyz
If x+y+z=8 and xy+yz+zx=20, find the value of x3+y3+z3−3xyz.
If x+y+z=9 and xy+yz+zx = 23, the value of (x3+y3+z3−3xyz)=?
(a) 108
(b) 207
(c) 669
(d) 729