The correct option is A tan2θ
We have,
dxdθ=−3sinθ+3sin3θ
dydθ=3cosθ−3cos3θ
⇒dydx=3cosθ−3cos3θ−3sinθ+3sin3θ
=cosθ−cos3θsin3θ−sinθ ⋯(1)
Since, cosC−cosD=2sin(C+D2)sin(D−C2)
and, sinC−sinD=2sin(C−D2)cos(C+D2)
equation (1) can be written as sin2θ sinθcos2θ sinθ=tan2θ