wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x3y5=(x+y)8, then show that dydx=yx

Open in App
Solution

x3y5=(x+y)8
x3(5y4dydx)+y5(3x2)=8(x+y)7(1+dydx)
5x3y4dydx+3x2y5=8(x+y)7+8(x+y)7dydx
(5x3y48(x+y)7)dydx=8(x+y)73x2y5
We have x3y5=(x+y)8x3y4=(x+y)8y
and x2y5=(x+y)8x2y5=(x+y)8x
(5(x+y)8y8(x+y)7)dydx=8(x+y)73(x+y)8x
(x+y)7(5x+5yy8)dydx=(x+y)7(83x+3yx)
5x+5y8yydydx=8x3x3yx
5x3yydydx=5x3yx
dydx=yx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon