wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(2θsin2θ) and y=a(1cos2θ), find dydx when θ=π3.

Open in App
Solution

Given x=a(2θsin2θ) and y=a(1cos2θ)

Differentiating x and y w.r.t θ we get

dxdθ=2a2acos2θ and dydθ=0+2asin2θ

Using chain rule, we get

dydx=dydθdθdx

=2asin2θ×12a2acos2θ

=sin2θ1cos2θ

cos2θ=12sin2θ=2cos2θ1

1cos2θ=2sin2θ

Also, sin2θ=2sinθcosθ

dydx=2sinθcosθ2sin2θ=cotθ

dydxθ=π3=cotπ3=13

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon