wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(2θsin 2θ) and y=a(1cos 2θ), find dydx when θ=π3.

Open in App
Solution

x=a(2θsin 2θ)

dxdθ=a(2cos 2θ2)=2a(1cos 2θ)

y=a(1cos 2θ)

dydθ=a(sin 2θ2)=2asin 2θ

Now, dydx=dydθdxdθ=2a.sin 2θ2a(1cos 2θ)=sin 2θ1cos 2θ

dydx]θ=π3=sin 2π31cos2π3=321+12=33=13

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon