We have,
x=acos3θ ……. (1)
y=asin3θ ……… (2)
On differentiating to equation (1) w.r.t θ, we get
dxdθ=a(3cos2θ)(−sinθ)
dxdθ=−3asinθcos2θ
On differentiating both sides w.r.t θ, we have
d2xdθ2=−3a(cos2θcosθ+sinθ(2cosθ(−sinθ)))
d2xdθ2=−3a(cos3θ−2sin2θcosθ)
Similarly,
On differentiating to equation (2) w.r.t θ, we get
dydθ=a(3sin2θ)(cosθ)
dydθ=3asin2θcosθ
On differentiating both sides w.r.t θ, we have
d2ydθ2=3a(sin2θ(−sinθ)+cosθ(2sinθ(cosθ)))
d2ydθ2=3a(−sin3θ+2cos2θsinθ)
Therefore,
d2ydθ2d2xdθ2=3a(−sin3θ+2sinθcos2θ)−3a(cos3θ−2sin2θcosθ)
d2ydx2=(−sin3θ+2sinθcos2θ)(−cos3θ+2sin2θcosθ)
Put θ=π6,we get
d2ydx2∣∣∣θ=π6=(−sin3(π6)+2sin(π6)cos2(π6))(−cos3(π6)+2sin2(π6)cos(π6))
d2ydx2∣∣∣θ=π6=⎛⎝−(12)3+2×12×(√32)2⎞⎠⎛⎝−(√32)3+2(12)2×(√32)⎞⎠
d2ydx2∣∣∣θ=π6=(−18+34)(−3√38+√34)
d2ydx2∣∣∣θ=π6=(−1+68)(−3√3+2√38)
d2ydx2∣∣∣θ=π6=7√3
Hence, the value is 7√3.