wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=acos3θ and y=asin3θ , then find the value of d2ydx2 at θ=n6

Open in App
Solution

We have,

x=acos3θ ……. (1)

y=asin3θ ……… (2)

On differentiating to equation (1) w.r.t θ, we get

dxdθ=a(3cos2θ)(sinθ)

dxdθ=3asinθcos2θ

On differentiating both sides w.r.t θ, we have

d2xdθ2=3a(cos2θcosθ+sinθ(2cosθ(sinθ)))

d2xdθ2=3a(cos3θ2sin2θcosθ)

Similarly,

On differentiating to equation (2) w.r.t θ, we get

dydθ=a(3sin2θ)(cosθ)

dydθ=3asin2θcosθ

On differentiating both sides w.r.t θ, we have

d2ydθ2=3a(sin2θ(sinθ)+cosθ(2sinθ(cosθ)))

d2ydθ2=3a(sin3θ+2cos2θsinθ)

Therefore,

d2ydθ2d2xdθ2=3a(sin3θ+2sinθcos2θ)3a(cos3θ2sin2θcosθ)

d2ydx2=(sin3θ+2sinθcos2θ)(cos3θ+2sin2θcosθ)

Put θ=π6,we get

d2ydx2θ=π6=(sin3(π6)+2sin(π6)cos2(π6))(cos3(π6)+2sin2(π6)cos(π6))

d2ydx2θ=π6=(12)3+2×12×(32)2(32)3+2(12)2×(32)

d2ydx2θ=π6=(18+34)(338+34)

d2ydx2θ=π6=(1+68)(33+238)

d2ydx2θ=π6=73

Hence, the value is 73.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon