wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=acos3θ,y=asin3θ, then find d2ydx2 at θ=π4.

Open in App
Solution

Given
x=acos3θ,y=asin3θ
Diff. w.r.t x on both
dydθ=3asin2θcosθ
and dxdθ=3acos2θsinθ
dxdy=dydθ/dxdθ
=3asin2θcosθ3acos2θsinθ
dydx=tanθ
Again Diff. w.r.t x on both
ddθ(dydx)=sec2θ
ddx(dydx)dxdθ=sec2θ
(d2ydx2)(3acos2θ)sin=θsec2θ
(dxdθ=3acos2θsinθ)
d2ydx2=sec2θ3acos2θsinθ
=sec2θ3acos2θsinθ
(d2ydx2)θ=π/4=(2)23a(12)2(12)
(d2ydx2)θ=π/4=23a×12×12=423a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon