If x=acos3θ,y=bsin3θ, then the value of d2ydx2 at θ=π6
Given, x=acos3θ,y=bsin3θ
Therefore, dydx=dydθdxdθ=3bsin2θcosθ−3acos2θsinθdydx=−batanθThus d2ydx2=ddθ(dydx)dθdx
=(−basec2θ)(−13acos2θsinθ)=2b3a2(34×34)
=32b27a2