wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=acos3θ;y=sin3θ, then find the value of d2ydx2 at θ=π6

Open in App
Solution

dxdθ=3acos2θsinθ
dydθ=3sin2θcosθ
dydx=3sin2θcosθ3acos2θsinθ = 1atanθ
Diffrentiate w.r.t x
d2ydx2=1asec2θdθdx
=1asec2θ(13acos2θsinθ)
d2ydx2=13a2cos4θsinθ
at θ=π6=30
=13a2.3.32.2.2.212
d2ydx2=3227a2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon