wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=acosθ+bsinθ and y=asinθbcosθ then prove that y2d2ydx2xdydx+y=0

Open in App
Solution

We are given,
acosθ+bsinθasinθbcosθ}(1)
Now, differentiate x and y wrt θ we get,
dxdθ=a(sinθ)+b(cosθ)=asinθ+bcosθ
& dydθ=a(cosθ)b(sinθ)=acosθ+bsinθ
So, dydx=dydθ×dθdx
dydx=acosθ+bsinθasinθ+bcosθ
dydx=xy ( From (1))
Now, differentiate above equation wrt x we get
d2ydx2=1y+(x)y2.dydx
d2ydx2=1y+xy2dydx
y2d2ydx2=y+xdydx
So, y2d2ydx2xdydx+y=0
Hence proved that...

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon