wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(cosθ+sinθ) and y=a(sinθcosθ), then find d2ydx2.

Open in App
Solution

x=acosθ+asinθ
dxdθ=asinθ+acosθ
d2xdθ2acosθasinθ
y=asinθaθcosθ
dydθ=acosθacosθ+aθsinθ
d2ydθ2=asinθ+asinθ+asinθ+aθcosθ
d2ydx2=d2y/dθ2dx2/dθ2=a(cosθ+sinθ)a(sinθ+aθcosθ)
d2ydx2=(cosθ+sinθ)(sinθ+aθcosθ)

1195339_1302037_ans_f0df798aaa03435882d2246b83c09053.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon