wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a cos3 θ, y=a sin3 θ, then 1+dydx2=
(a) tan2 θ
(b) sec2 θ
(c) sec θ
(d) sec θ

Open in App
Solution

(d) sec θ

We have, x=a cos3θdxdθ=addθcos3θdxdθ=3acos2θddθcosθdxdθ=-3acos2θsinθ ...1and, y=a sin3θdydθ=addθsin3θdydθ=3a sin2θddθsinθdydθ=3a sin2θ cosθ ...2Dividing 2 by 1, we get, dydθdxdθ=3a sin2θ cosθ -3acos2θsinθdydx=sinθ-cosθdydx=-tanθNow, 1+dydx2=1+tan2θ=sec2θ=secθ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon