If x+a is the HCF of x2+px+q and x2+1x+m, then find the value of 'a'.
Determine the value of a.
If (x–a) is a factor of px, then p(a)=0.
Let fx=x2+px+q and gx=x2+1x+m.
Here, x+a=x--a is a factor of fx, then f(-a)=0.
f-a=0⇒-a2+p-a+q=0⇒a2-pa+q=0⇒a2=pa-q…(1)
Here, x+a=x--a is a factor of gx, then g(-a)=0.
g-a=0⇒-a2+1-a+m=0⇒a2=a-m…(2)
Form equation 1 and 2, we get
pa-q=a-mpa-a=q-ma=q-mp-1
Hence, the value of a is q-mp-1.