wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=asec3θ, y=atan3θ find dydx at θ=π4.

Open in App
Solution

We are given, x=asec3θ & y=atan3θ.
We have to differentiate x & y wrt θ, we get,
dxdθ=a(3sec2θ).(secθ.tanθ)=3a.tanθ.sec3θ
& dydθ=a(3tan2θ).(sec2θ)=3atan2θ.sec2θ
[ With Use of chain rule ]
dydx=dydθ×dθdx=3atan2θ.sec2θ3atanθ.sec3θ
dydx=tanθsecθ=sinθcosθ×cosθ=sinθ
dydx]θ=π4=sinθ=sinπ4=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon