wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=asintbcost,y=acost+bsint, show that d2ydx2=x2+y2y3.

Open in App
Solution

x=asintbcost;y=acost+bsint

dxdt=acost+bsint;dydt=bcostasint

dydx=dydtdxdt=bcostasintacost+bsint

d2ydx2=ddt(dydx).dtdx

=ddt(bcostasintacost+bsint).1acost+bsint

=(acost+bsint)(acostbsint)(bcostasint)(bcostasint)(acost+bsint)3

=y2x2y3

d2ydx2=(x2+y2y3)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon