If x=a(t−sint) and y=a(1+cost), then the value of y2 at t=π2 is
dydx=dydtdxdt=a(−sint)a(1−cost)=sintcost−1 d2ydx2=ddt(dydx)dtdx=(cost(cost−1)+sint(sint)(cost−1)2))1a(1−cost) =(cost−1)2 d2ydx2|t=π2=1a