wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x = a(θ sinθ), y = a(1 + cosθ), find d2ydx2.

Open in App
Solution

x = a(θ sinθ) & y = a(1 + cosθ)
Now, dxdθ =a(1cosθ) & dydθ =a(sinθ).
dydx=sinθ(1cosθ)
=2sinθ2cosθ22sin2θ2
=2cosθ22sinθ2
=cotθ2
Now, d2ydx2=12cosec2(θ2)dθdx
=12cosec2(θ2)12asin2θ2
=14asin4θ2
=14a(1y2a)2 [Since,y=2acos2θ2sin2θ2=(1y2a)]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon