The given equations are x=a(cosθ+θsinθ),y=a(sinθ−θcosθ)
Then, dxdθ=a[ddθcosθ+ddθ(θsinθ)]=a[−sinθ+θddθ(sinθ)+sinθddθ(θ)]
=a[−sinθ+θcosθ+sinθ]=aθcosθ
& dydθ=a[ddθ(sinθ)−ddθ(θcosθ)]=a[cosθ−(θddθ(cosθ)+cosθ.ddθ(θ))]
=a[cosθ+θsinθ−cosθ]
=aθsinθ
∴dydx=(dydθ)(dxdθ)=aθsinθaθcosθ=tanθ