wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

If x and y are connected parametrically by the given equation, then without eliminating the parameter, find dydx.
x=a(cosθ+θsinθ),y=a(sinθθcosθ)

Open in App
Solution

The given equations are x=a(cosθ+θsinθ),y=a(sinθθcosθ)
Then, dxdθ=a[ddθcosθ+ddθ(θsinθ)]=a[sinθ+θddθ(sinθ)+sinθddθ(θ)]
=a[sinθ+θcosθ+sinθ]=aθcosθ
& dydθ=a[ddθ(sinθ)ddθ(θcosθ)]=a[cosθ(θddθ(cosθ)+cosθ.ddθ(θ))]
=a[cosθ+θsinθcosθ]
=aθsinθ
dydx=(dydθ)(dxdθ)=aθsinθaθcosθ=tanθ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon