Let δx and δy be the increments in x and y respectively, corresponding to increment δt in t.
Since x and y are differentiable functions of t.
∴limδt→0δxδt=dxdt ... (i)
and limδt→0δyδt=dydt ... (ii)
Also, δt→0,δx→0 ... (iii)
Now δxδy=(δyδt)(δxδt)(δt≠0)
Taking limits as δt→0, we get
limδt→0δyδt=limδt→0δyδtδxδt
limδt→0δyδx=limδt→0(δyδt)limδt→0(δxδt)
limδt→0δyδx=(dydt)(dxdt) [form (i) and (ii)]
∵ The limits in R.H.S. exist
∴limδt→0δyδx= exists and is equal to dydx
∴dydx=(dydt)(dxdt), If dxdt≠0.