wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=cosecθsinθ,y=cosecnθsinnθ then (x2+4)(dydx)2n2y2=

A
n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4n2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 4n2
x=cosecθsinθ
x2+4=(cosecθsinθ)2+4
=(cosecθ+sinθ)2
y=cosecnθsinnθ
y2+4=(cosecnθ+sinnθ)2
dydθ=n.cosecnθ(cosecθcotθ)+nsinn1θ.cosθ.
=ncotθ(cosecnθ+sinnθ)
dxdθ=cotθcosecθcosθ
=cotθ=(cosecθ+sinθ)
dydx=ncotθcotθ(cosecnθ+sinnθcosecθ+sinθ)
(dydx)2=n2(cosecnθ+sinnθ)2(1)2(cosecθ+sinθ)2
=n2(y2+4x2+4)
(x2+4)(dydx)2x2y2=4x2
option D

1142314_1143747_ans_072ae63c054d4bf8a86e6bec41ff3e5d.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon