wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=cost(32cos2t) and y=sint(32sin2t), find the value of dydx at t=π4

Open in App
Solution

x=cost(32cos2t)
=3cost2cos3t cos3t=4cos3t3cost
x=2cos3cos3t
dx=(6cos2tsint+3sin3t)dt
y=sint(32sin2t)
=3sint2sin3t sin3t=3sint4sin3t
y=sin3t+2sin3t
dy=(3cos3t+6sin2tcost)dt
dydx=2cos3t+2sin2tcostsin3t2cos2tsint
dydxt=π4=12+22212222=00
dydxt=π4 is not defined.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon