wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x cosθ=y cosθ+2π3=z cosθ+4π3, prove that xy+yz+zx=0. [NCERT EXEMPLAR]

Open in App
Solution

x cosθ=y cosθ+2π3=z cosθ+4π3cosθ1x= cosθ+2π31y=cosθ+4π31zcosθ1x= cosθ+2π31y=cosθ+4π31z=cosθ+cosθ+2π3+cosθ+4π31x+1y+1z ab=cd=ef=...=a+c+e+...b+d+f+...
cosθ1x= cosθ+2π31y=cosθ+4π31z=cosθ+2cosθ+2π3+θ+4π32cosθ+2π3-θ-4π321x+1y+1zcosθ1x= cosθ+2π31y=cosθ+4π31z=cosθ+2cosπ+θcos-π31x+1y+1zcosθ1x= cosθ+2π31y=cosθ+4π31z=cosθ+2×-cosθ×121x+1y+1z cos-θ=cosθ
cosθ1x= cosθ+2π31y=cosθ+4π31z=01x+1y+1z1x+1y+1z=0yz+zx+xyxyz=0xy+yz+zx=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon