1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Homogeneous Function
If xdydx=yl...
Question
If
x
d
y
d
x
=
y
(
log
y
−
log
x
+
1
)
,
then the solution of the equation is ?
Open in App
Solution
Given, the equation
x
d
y
d
x
=
y
(
log
y
−
log
x
+
1
)
⇒
d
y
d
x
=
y
x
(
log
y
x
+
1
)
⟶
(
1
)
, which is homogeneous equation
Let,
y
=
v
x
⇒
d
y
d
x
=
v
+
x
d
v
d
x
Then equation
(
1
)
becomes,
v
+
x
d
v
d
x
=
v
(
log
v
+
1
)
⇒
x
d
v
d
x
=
v
log
v
⇒
d
v
v
log
v
=
d
x
x
Integrating both sides we get,
∫
d
v
v
log
v
=
∫
d
x
x
⇒
log
|
log
v
|
=
log
|
x
|
+
log
|
C
|
⇒
log
(
log
v
)
=
log
x
+
log
C
⇒
log
(
log
y
x
)
=
log
x
+
log
C
⇒
log
(
log
y
x
)
=
log
(
x
C
)
⇒
log
y
x
=
x
C
⇒
log
y
−
log
x
=
x
C
⇒
log
y
=
log
x
+
x
C
⇒
y
=
e
(
log
x
+
x
C
)
.
Suggest Corrections
0
Similar questions
Q.
If
x
d
y
d
x
=
y
(
log
y
−
log
x
+
1
)
, then the solution of the equation is
Q.
The solution of the differential equation
x
d
y
d
x
=
y
(
l
o
g
y
−
l
o
g
x
+
1
)
is
Q.
If
x
d
y
d
x
=
y
(
log
y
−
log
x
+
1
)
then the solution of the equation is:
Q.
The solution of the differential
equation
x
d
y
d
x
=
y
(
log
y
−
log
x
+
1
)
is :
Q.
The solution of the differential equation
is
[IIT 1986; AIEEE 2005]