Given: x=1(2−√3)Rationalising denominator,x=1(2−√3)×(2+√3)(2+√3)⇒x=(2+√3)22−(√3)2=(2+√3)4−3=(2+√3)Substituting the value of xinx3−2x2−7x+5, we get,⇒x3−2x2−7x+5=(2+√3)3−2(2+√3)2−7(2+√3)+5=8+12√3+18+3√3−8−8√3−6−14−7√3+5[∵(a+b)3=a3+3a2b+3ab2+b3]=15√3−15√3+18−20+5=3Hence, x3−2x2−7x+5=3