The correct option is
D 0
We will make use of the following identities to solve the question :
(a+b)2+(a−b)2=2(a2+b2)⟶(1)
(a+b)3+(a−b)3=2a(a2+3b2)⟶(2)
Now, given x=5−√212
∴ 1x=25−√21=2(5+√21)(5−√21)(5+√21)=2(5+√21)4
⇒1x=5+√212
Now, x+1x=5−√212+5+√212=5
Similarly, x2+1x2=(5−√212)2+(5+√212)2
Using equation (1) we can easily write
x2+1x2=2×(254+214)=23
Also, x3+1x3=(5−√212)3+(5+√212)3
Using equation (2),
x3+1x3=2×52×(254+634)=110
∴ (x3+1x3)−5(x2+1x2)+(x+1x)=110−5×23+5=115−115=0
Correct answer : Option A.