If x=√3+√2√3−√2 and y=√3−√2√3+√2, then find the value of x2+y2?
Now, x=√3+√2√3−√2×√3+√2√3+√2, [Multiplying numerator and denominator by √3+√2]
=(√3+√2)2(√3)2−(√2)2 [Using identity,(a+b)(a−b)=a2−b2]
=(√3)2+(√2)2+2.√3.√23−2 [Using identity, (a+b)2=a2+b2+2ab]
=3+2+2√61=3+2+2√6∴x=5+2√6 −(i)
On squaring both sides, we get,
x2=(5+2√6)2
=(5)2+(2√6)2+2.5.2√6 [Using identity, (a+b)2=a2+b2+2ab]
⇒x2=25+24+20√6=49+20√6⇒x2=49+20√6 −(ii)∴y=√3−√2√3+√2=1x=15+2√6
=15+2√6×5−2√65−2√6 [Multiplying numerator and denominator by 5−2√6]
=5−2√6(5)2−(2√6)2=5−2√625−24=5−2√61 [Using identity, (a−b)(a+b)=a2−b2]
On squaring both sides, we get
y2=(5−2√6)2⇒y2=(5)2+(2√6)2−2×5×2√6
[Using identity,(a−b)2=a2+b2−2ab]
⇒y2=25+24−20√6⇒y2=49−20√6 (iii)
On adding eqs. (ii) and (iii) we get,
x2+y2=49+20√6+49−20√6=98