wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x(π4,3π4), then sinxcosx1sin2xesinx cosxdx=

A
esinx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
esinxcosx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
esinx+cosx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
esinxcosx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A esinx+c
Solution :
Given x(π4,3π4)
I=sinxcosx1sin2xesinxcosxdx
we have 1sin2x=sin2x+cos2x2sinxcosx
(sinxcosx)2=sinxcosx
I=esinxcosxdx
Now let sinx1
cosdx=dt
I=etdt
=et+C
Substituting value of t, we get
I=esinx+C


1096104_1165038_ans_077f7495832f4f03801862918d873f14.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon