wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x+iy=a+ibaib, prove that x2+y2=1.

Open in App
Solution

If x+iy=(a+ib)(aib)
Taking RHS
=(a+ib)(a+ib)(aib)(a+ib)=(a+ib)2(aib)(a+ib)=a2+(ib)2+2aiba2(ib)2=a2+i2b2+2aiba2(i2)(b2)=a2+i2b2+2aiba2(i2)(b2)=a2b2+2aiba2+b2=a2b2a2+b2+i(2aba2+b2)
Now LHS
x+iy
Comparing real and imaginary part in LHS and RHS
x=a2b2a2+b2y=2aba2+b2x2=(a2b2a2+b2)2(1)y2=(a2b2a2+b2)2(2)
Adding 1 and 2
x2+y2=(a2b2a2+b2)2+(2ab)2(a2+b2)2=1(a2+b2)2((a2b2)2(2ab)2)=1(a2+b2)2(a4+b42a2b2+4a2b2)=(a2)2+(b2)2+2a2b2(a2+b2)2=(a2+b2)2(a2+b2)2=1
Thus x2+y2=1
Hence proved.

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon