If x lies in IInd quadrant, then √1+sinx+√1−sinx√1+sinx−√1−sinx is equal to
We have,
√1+sinx+√1−sinx√1+sinx−√1−sinx
=√sin2x+cos2x+2sinx2cosx2+√sin2x+cos2x−2sinx2cosx2√sin2x+cos2x+2sinx2cosx2−√sin2x+cos2x−2sinx2cosx2
=√(sinx2+cosx2)2+√(sinx2−cosx2)2√(sinx2+cosx2)2−√(sinx2−cosx2)2
=sinx2+cosx2+sinx2−cosx2sinx2+cosx2−sinx2+cosx2
=2sinx22cosx2
=tanx2
Hence,
this is the answer.